Brain Optimization for Peak Performers

Though previously applied in more clinical contexts, recent years have seen an increase in popularity for Neurofeedback training in the world of professional sport. Athletes and coaches constantly strive to create the most optimal conditions, both mentally and physically, in order to triumph in a highly competitive and pressure-filled environment.

Rather than attempting to detect changes in neural activity (as per the clinical application), Neurofeedback training, when applied to areas of peak performance, aims to detect the optimal levels of cortical activity, and harness them for future success. As this optimal state is reinforced via operant conditioning, the training has been implicated in the acquisition and mastery of a wide range of physical and cognitive skills, and reducing the time taken to turn a novice individual into an elite performer.

The self-regulation techniques involved in Neurofeedback training, such as increasing attention and motivation, concentration, and greater autonomic control, all represent powerful tools for expert performance in elite athletes. Research involving expert marksmen, golfers and archers have all posited that by positively reinforcing individuals for reaching optimal levels of cortical activity, practitioners are able to help athletes quiet their mind, and regulate their mental and emotional environment and concentrate more thoroughly – all of which reflect both indispensable tools for daily life, and states highly conducive to peak athletic performance.

For instance, a range of studies have found that, in the preparatory phase preceding a particularly focused action, such as a marksman firing a shot or during a board-break in karate, successful increase in EEG alpha activity (8-12Hz) in the left temporal lobe was correlated with better performance. The overarching consensus is that by increasing this frequency in the left hemisphere, cortical activity in this area was reduced, allowing the visuospatial processes of the right hemisphere to take over, resulting in fewer errors and superior outcomes.

Another important factor governing the success of an elite sportsperson is their ability to recover following an injury – as such, the positive cognitive outcomes associated with NF training have become a valuable rehabilitative tool. In the weeks and months following an injury such as a concussion (an extremely common sports-related injury), the brain is vulnerable to a range of negative physiological and psychological outcomes that can impact performance in both the short and long term. By reducing stress and anxiety, players are able to engage with their own recovery and minimise the the negative outcomes of an injury, ultimately leading to a faster recovery and a more successful return to form, restoring their confidence in the aftermath of a setback.

Supporting Research

College golfers in the USA participated in a study exploring how neurofeedback can improve performance. Sherlin and colleagues (2015) took baseline measurements of the golfers and divided them into groups that either received neurofeedback training or no neurofeedback training. After the neurofeedback training it was observed that the golfers performed better in putting (less putts per round and less ‘three-putts’ per round), and in ball striking statistics (higher number of ‘greens in regulation’).

Sixteen pre-elite golfers participated in a study to see if neurofeedback could help their performance in putting. Cheng and colleagues (2015) designed a study to determine a putting distance where the participant could make a minimum of 50% of their putts. They were then fitted with a Lycra electrode cap and practised putting for ten minutes before they underwent a resting EEG recording. Participants then hit 40 putts spread over four trials while EEGs were recorded. Scores were calculated based on the distance from the edge of the ball to the edge of the hole (e.g., a putt that finished in the hole was scored as 0). After this pre-test that lasted around two hours the participants were split into groups where one group were scheduled to go through eight sessions of neurofeedback training while the other group did not receive any training. Compared to the control group, the golfers that received neurofeedback performed better in the putting tasks. Additionally, the golfers that received the sensorimotor rhythm (SMR) neurofeedback training showed an enhanced SMR activity 1.5 seconds before they made a putt and this lead to improved putting performance.

Most athletes understand that at the highest level of sporting competition the difference between winning and losing can be the result of the smallest element. It is no surprise that sporting professionals in pursuit of glory are looking for any possible edge so that they can improve their performance. Park, Fairweather, and Donaldson (2015) looked at previous studies on neuroimaging and neurofeedback and how these techniques have been used by athletes to improve sporting performance. Although the research into the link between sporting performance and neurofeedback  is relatively new, the link between brain waves and sporting performance can shed some light on professional athletes. This study looked at alpha rhythms and its link with expert performance as well as other developments in neuroscience that have benefits for highly performing athletes.

Mierau, Hulsdunker, and Struder (2015) looked at the relationship between sports performance and cortical oscillations (to do with brain activity).  Their research aimed at using a real world setting in order to make their work as applicable as possible. Cortical oscillations are measured using an electroencephalography (EEG) and activity in different brain waves (e.g., alpha, beta, delta, gamma, and theta) have been shown to correlate with accomplishment of different tasks. This study looked further into the link between neurofeedback and how it is being used to improve sporting performance.

A study in 2015 by Mikicin aimed to understand how neurofeedback can improve the performance of and  athletic mind. The study used 50 participants and split into two groups; an experimental group and a control group. The experimental group of 25 participants received 20 neurofeedback-EEG training sessions and also completed athletics training every seven days for a period of four months. The control group did not receive the neurofeedback but completed their athletic training. Measures were taken before and after the four month training regimes to understand the impact that neurofeedback had on the athletes. A significant improvement in the minds of the athletes was seen in the results which included an increase speed and efficiency of the mind. The author concluded that the neurofeedback-EEG training has the ability to improve the performance in the mind of the athlete.

Landers and colleagues (1991) took 24 archers and administered EEG biofeedback to see if this could improve their performance, confidence, and levels of self-reported concentration. There were 16 male and 8 female experienced pre-elite archers and they were randomly assigned to one of three groups. The first group received correct feedback, the second group received incorrect feedback, and the final group was the control group and they did not receive any feedback. Before any treatment was given the archers had 27 shots and this determined their baseline score. EEG data was collected for the left and right temporal hemispheres. Following this the correct feedback group and the incorrect feedback group received their treatment while the control group rested for 30 minutes. The archers then took another 27 shots at the target and the researchers found that the group that received the correct treatment significantly improved their performance while the group that received the incorrect feedback saw a significant decline in their performance. The control group did not show any significant difference between tests. There was no significant effect on the levels of concentration or confidence.

Zoefel et al. (2011) investigated the upper alpha frequency band as a neurofeedback parameter. Neurofeedback training was administered to fourteen participants who, within one week, received five sessions. Cognitive ability was tested in the form of a mental rotation task on the first and fifth session. The results showed that eleven of the fourteen participants (79%) had a significant increase in their cognitive ability.

As part of their preparation in the lead up to the 2004 World Cup in Football, Italy participated in biofeedback and neurofeedback training. They labeled a facility the “Mind Room” where players were assessed and taught to maintain appropriate breathing, coherent heart rhythms, dominant alpha brain states, and relaxed muscles. Wilson, Peper, & Moss (2006) looked at how the Italian team used this facility and then went on to win the World Cup in Germany. The authors point out that the “Mind Room” was not the sole factor in the Italian team winning the World Cup but they do mention that this type of training has become more widely used among professional teams.

Make An Appointment

Ever wonder what your brain is capable of achieving? Call us today.